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Abstract. We investigate zero-temperature Gibbs learning for two classes of unrealizable
rules which play an important role in practical applications of multilayer neural networks
with differentiable activation functions: classification problems and noisy regression problems.
Considering one step of replica symmetry breaking, we surprisingly find that for sufficiently
large training sets the stable state is replica symmetric even though the target rule is unrealizable.
Furthermore, the classification problem is shown to be formally equivalent to the noisy regression
problem.

Neural networks with differentiable activation functions play an important role in practical
applications [1]. Besides being used for regression, they are often applied to classification
problems as well, since gradient based methods are available for training such networks. In
both cases, given a training set ofP input/output pairs(Eξµ, θµ), Eξµ ∈ RN, θµ ∈ R, one adapts
the network with outputσ to minimize a cost function which measures the deviation between
σ(Eξµ) and the target outputθµ.

For theregression problemwe shall assume that the target output is a functionτ of the
input, corrupted by additive noise, soθµ := τ(Eξµ) + γ νµ. The noise termsνµ are independent
and normally distributed. An appropriate cost function then is the quadratic error

H = Pεt = 1
2

P∑
µ=1

(σ (Eξµ)− θµ)2. (1)

We call εt , the mean energy per example,training error. The main goal of learning,
however, is to minimize theprediction errorεp, defined as the expectation value of the training
error on a new example, that isεp = 〈(σ (Eξ)− θ(Eξ))2〉/2, where the average is performed over
the distribution of inputs and the randomness ofθ in the presence of noise.

In classification problemsonly a binary label is available for the examples and we shall
assume thatθµ = λ sign(τ (Eξµ)). Hereτ is some function of the input andλ is a tunable
parameter. One is then mainly interested in the sign of the network’s output, that is the goal
of learning is to minimize theclassification error

εc = 〈2(−σ(Eξ)τ (Eξ))〉 (2)
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where2 is the Heaviside step function. However, the empirical mean of this performance
measure

P−1
P∑
µ=1

2(−σ(Eξµ)θµ) (3)

is piecewise constant and cannot be optimized using, e.g., backpropagation. While the sample
complexity of training multilayer networks based on (3) has been analysed in [2–4], practical
applications of neural networks [1,5,6] typically use the differentiable cost function (1) even for
classification tasks. So for the purposes of training, classification is mapped onto regression,
and the question arises how this affects the generalization behaviour. (Alternative cost functions
have been studied in the context of online learning [7].)

Here we present a theoretical investigation of the two learning problems. We focus on a
simple two-layered student network which consists ofK hidden units with activation function
g(x) = erf(x/

√
2) andN -dimensional weight vectors{ EJi}Ki=1, where EJ 2

i = N . The output
unit is linear and has weights fixed to the value 1/

√
K. Then, the output of this network which

is called a ‘soft-committee machine’ [8,9] is

σ(Eξ) = 1√
K

K∑
i=1

g

( EJi · Eξ√
N

)
. (4)

The target functionτ(Eξ)will be given by a soft-committee machine with the same number
of hidden units as the student network and weight vectors{ EBi}Ki=1, where EBi · EBj = Nδij .
So the classification problem is perfectly learnable in the sense that the student network can
achieveεc = 0 if its weight vectors become identical to those of the teacher network. Further,
we assume the components of the examples to be independent random numbers with mean
zero and unit variance.

We use the well known replica formalism to investigate these problems in the
thermodynamic limitN →∞. This requires the calculation of the quenched free energy

F = − 1

β
〈lnZ〉 = − 1

β

∂

∂n
ln〈Zn〉

∣∣∣∣
n=0

(5)

where Zn is the partition function
∫

dµ ({ EJ ai }) exp(−β∑n
a=1H({ EJ ai }Ki=1)) of n replicas

(labelleda, b = 1, 2, 3, . . .) of the student network [11, 12]. HereH is interpreted as the
energy of a system which is in thermal equilibrium at a temperatureT = 1/β. In the limit
of zero temperature,β →∞, F is the optimal value of the energy which can be achieved by
minimizingH with respect to the network weights.

Introducing an additional integration over theorder parametersQab
ij := EJ ai · EJ bj /N and

Raij := EJ ai · EBj/N , which is performed as a saddle point integration in the limit of largeN ,
we find for moments of the partition function, ln〈Zn〉 = −N(αKGr + s)|extr. HereGr is an
effective Hamiltonian and the entropy terms = ( 1

2) ln detC, whereC is theK(n+1)×K(n+1)-
dimensional matrix of the order parameters [10]. We have further introduced the rescaled
number of examples,α = P/(NK).

In the following we restrict ourselves to the limit of largeK. We make a site-symmetric
Ansatz for the dependence of the order parameters on the site indicesi, j :

Raij = δij
(
R̂a

K
+1a

)
+ (1− δij ) R̂

a

K
(6)

Qab
ij = δij

(
Q̂ab

K
+ δab

)
+ (1− δij ) Q̂

ab

K
. (7)
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The scaling of the unspecialized order parameters with the number of hidden units results from
the condition that the outputs of the studentsσa must be of order one in the limit of infiniteK.
In this limit the calculation ofGr can be carried out analytically since the joint distribution of
theσa andτ becomes Gaussian [4].

For the regression problem, using a one-step replica symmetry breaking (RSB) Ansatz,
we obtain in the limitn→ 0:

G0
r =

1

2

(
X1

X2
+
m− 1

m
lnX3 +

1

m
lnX2

)
(8)

where

X1 = β(v0 − 2w + 1
3 + γ 2)

X2 = 1 +β(u + (m− 1)v1−mv0)

X3 = 1 +β(u− v1)

u = 1
3 + Q̂/π , v1 = f (δ1, Q̂1), v0 = f (δ0, Q̂0), andw = f (1, R̂) are the covariances of the

σa andτ , where

f (x, y) = 2

π
arcsin

(x
2

)
+
y

π
.

It is easy to calculates and to perform the limitn → 0 to obtain the entropy terms0 in the
free energy which is the same as for hard-committee machines [4]. The order parameter1

indicates specialization of the network: if1 = 0, the network configuration is unspecialized,
i.e. a weight vector of the student network has the same overlap (R̂/K) with all weight vectors
of the teacher network, whereas a positive1 indicates a specialized configuration where each of
the student vectors has a greater overlap (R̂/K+1) with one of the teacher vectors than with the
others.Q̂/K is the cross-overlap between different weight vectors of a student. The remaining
order parameterŝQ0, Q̂1, δ0, δ1 andm parametrize the distribution of overlaps between the
weight vectors of different students. Note that as in [10], using the saddle point equations for
the free energy, one may analytically eliminate the unspecialized order parametersR̂, Q̂, Q̂0

andQ̂1.
In terms of the order parameters the prediction error for the regression problem is given

by

εp = 1

3
+
Q̂

2π
− R̂
π
− 2

π
arcsin

(
1

2

)
+
γ 2

2
. (9)

The replica calculation for the classification problem is analogous. It yields the same
entropys0 and aG0

r of the form (8) with identicalX2 andX3 but

X1 = β
(
v0 − 2wλ

√
6/π + λ2

)
. (10)

For the prediction and classification error one finds

εp = 1

6
+
Q̂

2π
− λ

√
6

π

(
2

π
arcsin

(
1

2

)
+
R̂

π

)
+
λ2

2
(11)

εc = 1

π
arccos

( 2

π
arcsin

(
1

2

)
+
R̂

π

)(
1

9
+
Q̂

3π

)− 1
2

 . (12)

In the limit of large sample sizeP the training errorεt will converge toεp. So for the
classification error to become zero the value ofλ must be chosen so that the minima ofεp
andεc coincide. Note that the order parameters are constrained by the fact that the vectors
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Ea := (1/N)∑K
i=1
EJi andEb := EBj must fulfil(Ea · Eb)2 6 Ea2Eb2, which demandŝQ > (1+R̂)2−1.

Minimizing the prediction error (11) under this restriction, we obtain1 = 1 andQ̂ = R̂ = 0
(student and teacher network identical,εc = 0) only forλ = λ0 =

√
π/6. This is the optimal

value ofλwhich allows asymptotically perfect classification. Insertingλ = λ0 in equation (10)
and comparing to (8), one finds that in this case the free energy of the classification problem

is identical to that of a noisy regression problem withγ = γ0 =
√
π/6− 1

3. In the following
we shall only consider the caseλ = λ0 for the classification problem.

We focus on the limit of zero temperature and the construction of this limit depends on
whether a zero training error is achievable. Denoting this critical capacity byαc(γ ), we find
thatαc(γ ) decreases to zero with increasingγ andαc(γ )→ 1 asγ → 0. This is explained by
the fact that the noise increases the magnitude of the target outputs. This correlates the hidden
units of the student and thus reduces the storage capacity.

Below αc(γ ) we find an unspecialized replica symmetric (RS) solution with1 = δ1 =
δ0 = 0. Above αc(γ ) one findsδ1 → 1 for β → ∞ and the appropriate scaling is
1− δ1 = η̂/β whereη̂ is O(1). To achieve nontrivial resultsm must also be scaled with
β and we reparametrizem = m̂/β. Then forα > αc(γ ) the zero-temperature free-energy
functional is given by

2F

NK
= α

{
1− 2z(1) + z(δ0) + 3γ 2π/(π − 3)

κη̂ + m̂(1− z(δ0)) + 3π/(π − 3)

+
1

m̂
ln

[
κη̂ + m̂(1− z(δ0)) + 3π/(π − 3)

κη̂ + 3π/(π − 3)

]}
− δ0 − (1)2
η̂ + m̂(1− δ0)

− 1

m̂
ln

[
η̂ + m̂(1− δ0)

η̂

]
(13)

whereκ = (2√3− 3)/(π − 3) andz(x) = (−3/π)(x − 2 arcsin(x/2)). The RS case may be
recovered by either taking the limit̂m→ 0 or the limitδ0→ 1.

These equations still admit an at least metastable unspecialized solution with1 = 0 for
all α > αc(γ ). But now replica symmetry is broken in this solution, and this also holds in the
noiseless caseγ = 0. Above a second criticalα the stable solution is specialized (1 > 0) and
remarkably even in the noisy case this specialized solution does not exhibit RSB.

The lifting of RSB with the onset of specialization is illustrated in figure 1 forγ = γ0.
Fixing1and maximizing (13) wrt to the remaining order parameters corresponds to calculating
the free energy of a system with a state space constrained to vectors yielding a specialized
student/teacher overlap of1. At the maximumF/P is the training error of the constrained
system shown in figure 1.

The physically relevant states in the case of training with unconstrained1 are given by
the minima of these curves. Both in the RS and the RSB parametrizations we find a local
minimum at1 = 0, which corresponds to a metastable unspecialized configuration of the
system. Here the RSB solution yields a greater free energy than the RS solution and therefore
is the only physically relevant solution.

With increasing1 both curves approach each other, and the RSB and RS solutions merge
at1 ≈ 0.78, i.e. for sufficiently large1 there is no RSB.

There is a second minimum of the free energy at1 ≈ 0.87 which corresponds to an RS
specialized phase of the learning with unconstrained1 which yields a lower free energy than
the unspecialized solution and therefore is the globally stable configuration.

In general, we find the following scenario which is illustrated in the right panel of figure 1
for γ = γ0. For all values ofα there is an unspecialized solution with constant prediction
error (εp = 1

3 − 1/π + γ 2/2). Replica symmetry is broken in this solution forα > αc(γ ).
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Figure 1. Results for the classification problem and for the noisy regression problem withγ = γ0.
Left panel: εt (1) for α = 25. Dashed curve: RS solution; solid curve: one-step RSB solution.
Right panel:εt (α). At αc(γ0) ≈ 0.3 replica symmetry is broken. Atα ≈ 21.5 replica symmetry
is restored with the onset of specialization. The dashed curve shows the (wrong) results of a RS
calculation.

Beyond a second criticalα the unspecialized solution is only metastable and the stable solution
is specialized and RS. In the noiseless case, the two critical values ofα coincide, and thus
replica symmetry is never broken in the stable state. In the noisy case, the prediction error
decays as 1/α to its asymptotical valueγ 2/2 in the specialized phase.

For the classification problem,γ = γ0, the 1/α decay of the prediction error translates
into the following asymptotics of the classification error:

εc ∼
√
π
2 − 1

π
1
4

1√
α
. (14)

This slow decay ofεc reflects the cost of treating the classification problem as a regression
problem and thus mapping a realizable case onto an unrealizable one. Based on the results
of [2] one would expect 1/α asymptotics of the classification error, if the hard cost function (3)
is used instead of the quadratic deviation (1). Thus future research into batch learning should
investigate the use of cost functions like the ones proposed in [7] for the online scenario.

For the general case of noisy regression, it is remarkable that RSB is only a transient
phenomenon in that the specialized state which is the stable one for largeα is RS even in this
unrealizable scenario.

Part of this work was carried out during the Seminar on Statistical Physics of Neural Networks at
the Max-Planck-Institut f̈ur Physik komplexer Systeme in Dresden. This work was supported
by a British Council grant (British-German Academic Research Collaboration, programme
project 1037) and a DAAD grant (project number 9818105).

We thank Georg Reents and Enno Schlösser for stimulating discussions and a critical
reading of the manuscript.
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